Variable Bandwidth Kernel Estimators of Regression Curves
نویسندگان
چکیده
منابع مشابه
Optimal bandwidth selection for semi-recursive kernel regression estimators
In this paper we propose an automatic selection of the bandwidth of the semi-recursive kernel estimators of a regression function defined by the stochastic approximation algorithm. We showed that, using the selected bandwidth and some special stepsizes, the proposed semi-recursive estimators will be very competitive to the nonrecursive one in terms of estimation error but much better in terms o...
متن کاملNew Bandwidth Selection for Kernel Quantile Estimators
We propose a cross-validation method suitable for smoothing of kernel quantile estimators. In particular, our proposed method selects the bandwidth parameter, which is known to play a crucial role in kernel smoothing, based on unbiased estimation of a mean integrated squared error curve of which the minimising value determines an optimal bandwidth. This method is shown to lead to asymptotically...
متن کاملUniform in Bandwidth Consistency of Kernel Regression Estimators at a Fixed Point
We consider pointwise consistency properties of kernel regression function type estimators where the bandwidth sequence in not necessarily deterministic. In some recent papers uniform convergence rates over compact sets have been derived for such estimators via empirical process theory. We now show that it is possible to get optimal results in the pointwise case as well. The main new tool for t...
متن کاملWeighted Kernel Estimators in Nonparametric Binomial Regression
This paper is concerned with nonparametric binomial regression. Two kernel-based binomial regression estimators and their bias-adjusted versions are proposed, whose kernels are weighted by the inverses of variance estimators of the observed proportion at each covariate. Asymptotic theories for deriving asymptotic mean squared errors (AMSEs) of proposed estimators are developed. Comparisons with...
متن کاملUNIFORM IN BANDWIDTH CONSISTENCY OF KERNEL - TYPE FUNCTION ESTIMATORS By
We introduce a general method to prove uniform in bandwidth consistency of kernel-type function estimators. Examples include the kernel density estimator, the Nadaraya–Watson regression estimator and the conditional empirical process. Our results may be useful to establish uniform consistency of data-driven bandwidth kernel-type function estimators.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: The Annals of Statistics
سال: 1987
ISSN: 0090-5364
DOI: 10.1214/aos/1176350260